

STK400-490

3ch AF Power Amplifier (Split Power Supply) (25W + 50W + 25W, THD = 0.4%)

Overview

The STK400-490 is an audio power amplifier IC for multichannel speaker applications. It comprises two 25W channels (left and right) and a 50W channel (center) in a single package. It is fully pin compatible with the 3-channel output devices (STK400-×00 series) and 2-channel output devices (STK401-×00 series). In addition, it supports $6/3\Omega$ output load impedance.

Features

- Pin compatible with the 3-channel output devices (STK400-×00 series) and 2-channel output devices (STK401-×00 series)
- Output load impedance $R_L=6/3\Omega$ supported
- Pin configuration grouped into individual blocks of inputs, outputs and supply lines to minimize the adverse effects of pattern layout on operating characteristics.
- Few external components

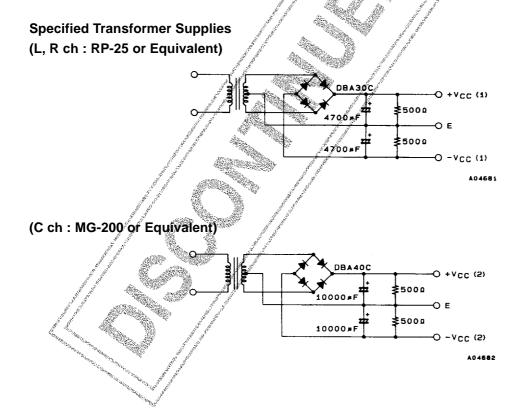
Package Dimensions

unit:mm

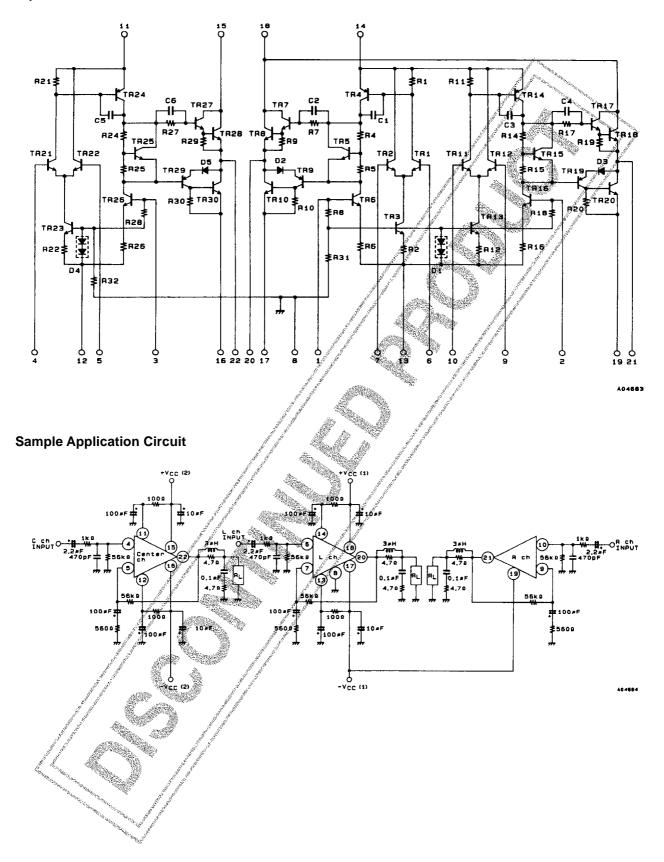
Specifications

Maximum Ratings at Ta = 25°C

Parameter	Channel	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	L, R	V _{CC} max1		±36	V
waximum suppiy voitage	/ Con	V _{CC} max2	AND THE PARTY OF T	±47	V
Thermal resistance	. L, R	θ j-c1 🦯	Per power transistor	2.1	°C/W
Thermal resistance	, c	θ j-c2	Per power transistor	1.7	°C/W
Junction temperature	100	T A		150	°C
Operating substrate temperature	de la lacación de la company	_d r T ¢		125	°C
Storage temperature		√ Tstg		-30 to +125	°C
Available time for load short-circuit	L, R	√ t _s 1	V_{CC} =±25V, R _L =6 Ω , f=50Hz, P _O =25W	1	s
Available time for load short-circuit	C	t _S 2	V _{CC} =±32V, R _L =6Ω, f=50Hz, P _O =50W	1	s


- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges,or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

STK400-490


Operating Characteristics at Ta = 25°C, R_L= 6Ω (noninductive load), Rg= 600Ω , VG=40dB

Parameter	Channel	Symbol	Conditions		Unit		
Falametei	Chamer	Symbol	Conditions	min	typ	max	Offic
	L, R	P _O 1	V _{CC} =±25V, f=20Hz to 20kHz, THD=0.4%	25	30		w
Output power	С	P _O 2	V _{CC} =±32V, f=20Hz to 20kHz, THD=0.4%	50	55	· Commence	W
	L, R	P _O 3	V_{CC} =±21V, f=1kHz, THD=1.0%, RL=3 Ω	25	30	No. of Concession, Name of Street, or other parts of the Street, o	W
	С	P _O 4	V_{CC} =±26V, f=1kHz, THD=1.0%, RL=3 Ω	50	55	The state of the s	W
Total harmonic distortion	L, R	THD1	V _{CC} =±25V, f=20Hz to 20kHz, P _O =1.0W			0.4	[*] %
			V _{CC} =±25V, f=1kHz, P _O =5.0W	P. A. C.	0.02	Start Market	%
	С	THD2	V _{CC} =±32V, f=20Hz to 20kHz, P _O =1.0W			0.4	%
			V _{CC} =±32V, f=1kHz, P _O =5.0W	69.34	0.01		%
Frequency response	L, R	f _L , f _H 1	V _{CC} =±25V, P _O =1.0W, ⁺⁰ / ₋₃ dB	1260	20 to 50k	and the second	Hz
Trequency response	С	f _L , f _H 2	V _{CC} =±32V, P _O =1.0W, **3 dB		20 to 50k		Hz
Input impedance	L, R	r _i 1	V _{CC} =±25V, f=1kHz, P _O =1.0W	43.0	<i>y</i> 555		kΩ
Imput impedance	С	r _i 2	V _{CC} =±32V, f=1kHz, P _O =1.0W	***	, ja		kΩ
Output noise voltage	L, R	V _{NO} 1	V _{CC} =±30V, Rg=10kΩ	130	1 d	1.2	mVrms
Output Hoise voltage	С	V _{NO} 2	V _{CC} =±39V, Rg≠10kΩ	Part /	1	1.2	mVrms
Quiescent current	L, R	I _{CCO} 1	V _{CC} =±30V	, 20	60	100	mA
	С	I _{CCO} 2	V _{CC} =±39V	<i>√</i> 10	30	50	mA
Neutral voltage	L, R	V _N 1	V _{CC} =±30V	<i>≸ ∮</i> −70	0	+70	mV
N	С	V _N 2	V _C C=±39V	<i></i>	0	+70	mV

Note.
All tests are measured using a constant-voltage supply unless otherwise specified.
Available time for load short-circuit and output noise voltage are measured using the transformer supply specified below.
The output noise voltage is the peak value of an average-reading meter with an amy value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise.

Equivalent Circuit

STK400-490

Series Configuration

These devices form a series of pin-compatible devices with different number of output channels, output ratings and total harmonic distortion. Some of these devices are under development. Contact your Sanyo sales representative if you requiere more detailed information.

STK400-000, STK400-200 series (3-channel, same output rating)			STK401-000, STK401-200 series (2-channel)					Supply voltage [V]1					
Type No.	THD [%]	Type No.	THD [%]	Rated output	Type No.	THD [%]	Type No.	THD [%]	Rated output	V _{CC} max1	V _{CC} max2	V _{CC} 1	V _{CC} ²
STK400-010		STK400-210		10W×3	STK401-010	0.4	STK401-210	0.08	10W×2	40° - 40°	∂ ± 26.0	*±17.5	±14.0
STK400-020		STK400-220		15W×3	STK401-020		STK401-220		15W×2	Age -	± 29.0	±20.0	±16.0
STK400-030		STK400-230		20W×3	STK401-030		STK401-230		20W×2	J - 1999	±34.0	±23.0	≇ 19.0
STK400-040		STK400-240	0.08	25W×3	STK401-040		STK401-240		25W×2	- 4	±36.0	±25.0	±21.0
STK400-050		STK400-250		30W×3	STK401-050		STK401-250		30W×2	- 30	±39.0	±26≠0	±22.0
STK400-060		STK400-260		35W×3	STK401-060		STK401-260		35W×2	49.	±41.0	±28.0	±23.0
STK400-070	0.4	STK400-270		40W×3	STK401-070		STK401-270		. 40W×2	-	±44.0	±30.0	±24.0
STK400-080	0.4	STK400-280	0.06	45W×3	STK401-080	0.4	STK401-280	0.06	45W×2		±45,0	±31.0	±25.0
STK400-090		STK400-290		50W×3	STK401-090		STK401-290		50W×2	-	±47.0	±32.0	±26.0
STK400-100		STK400-300		60W×3	STK401-100		STK401-300		60W×2		±51.0	±35.0	±27.0
STK400-110		STK400-310		70W×3	STK401-110		STK401-310		70W×2	±56.0	j f -	±38.0	-
					STK401-120		STK401-320		80W×2	±61.0	<i>f</i> -	±42.0	-
					STK401-130		STK401-330	JYSVAKA	100W×2	±65,0	-	±45.0	-
					STK401-140		STK401-340		120W×2	±74.0	-	±51.0	-

STK400-400, STK400-600 series (3-channel, different output ratings)							Supply voltage [V]1				
Type No.	THD [%]	Type No.	THD [%]	Rated output		∜ _C C max1.	V _{CC} max2	V _{CC} 1	V _{CC2}		
STK400-450		STK400-650		Cch	30W 🧷	j - 🦠	±39.0	±26.0	£22.0		
311400-430		S1K400-650	-	Lch, Rch	15₩ <i>/</i>	AP.	±29.0	±20.0	±16.0		
STK400-460		STK400-660		Cch	35W		±41.0	±28.0	±23.0		
311400-400		311(400-000		Lch, Rch	/ 15W	- Telephone	±29.0 /	± 20.0	±16.0		
STK400-470		STK400-670		Cch	40W	****	±44.0/ //	±30.0	±24.0		
31K400-470		31K400-070	-	Lch, Rợn	20W	6 0 3	±34.0	±23.0	±19.0		
STK400-480		STK400-680		Cơh 🧷	45Ŵ		±45.0	±31.0	±25.0		
31K400-460				Lch, Rch	20W	-	±34.0	±23.0	±19.0		
STK400-490	7	0.4	STK400-690	0.00	. Cch	50W	- /	±47.0	±32.0	±26.0	
31K400-490	0.4	31K400-090	0.08	Lch, Rch	25W	- <i>f j</i>	±36.0	±25.0	±21.0		
STK400-500		STK400-700	Application of the second	Cch	60W	part and	±51.0	±35.0	±27.0		
31K400-500		31K400-700		Lch, Rch	30W	- A	±39.0	±26.0	±22.0		
STK400-510		STK400-710		Cch	70W	±56.0	-	±38.0	-		
31K400-310		31K400-770	ľ	Lch, Rch	35W	1 -	±41.0	±28.0	±23.0		
STK400-520		STK400-720	A 450	Cch 🦠	80W	±61.0	-	±42.0	-		
31N400-020		311400-720	Ŷ.	Lch, Rch	40W	-	±44.0	±30.0	±24.0		
STK400-530		STK400-730	an Wa	Gch	100W	±65.0	-	±45.0	-		
31N400-530	á	S 1/N400-7300	ravita.	Lch, Rch	∮,50W	-	±47.0	±32.0	±26.0		

 $^{1. \} V_{CC} \ \text{max} 1 \ (R_L = 6\Omega), \ V_{CC} \ \text{max} 2 \ (R_L = 3 \ \text{io} \ 6\Omega), \ V_{CC} \ (R_L = 6\Omega), \ V_{CC} 2 \ (R_L = 3\Omega)$

Heatsink Design Considerations

The heatsink thermal resistance, θc -a, required to dissipate the STK400-490 device total power dissipation, Pd, is determined as follows:

Condition 1: IC substrate temperature not to exceed 125°C Pd (total)×
$$\theta$$
c-a+Ta<125°C(1) Pd (total)=Pd (L)+Pd (R)+Pd (C)

Where Ta is the guaranteed maximum ambient temperature, Pd (total) is the total power dissipation, Pd (L) is the left-channel power dissipation, Pd (R) is the right-channel power dissipation and Pd (C) is the center-channel power dissipation.

Condition 2: Power transistor junction temperature, Tj, not to exceed 150°C

where N is the left and right-channel number of power transistors, N' is the center-channel number of power transistors, θ -c is the left and right-channel power transistor thermal resistance per transistor, and θ -c' is the center-channel power transistor thermal resistance per transistor. Note that the power dissipated per transistor is the total, Pd devided evenly among the N power transistors.

Expressions (1), (2) and (3) can be rewritten making θ e-a the subject.

The heatsink required must have a thermal resistance that simultaneously satisfies all three expressions.

The heatsink thermal resistance can be determined from (1)', (2)' and (3)' once the following parameters have been defined.

- Supply voltage : VCC
- Load resistance: R_L
- Guaranteed maximum ambient temperature: Ta

The total device power dissipation when STK400-490 V_{CC} (1)= $\pm 25V$, V_{CC} (2)= $\pm 32V$ and R_L = 6Ω , for a continuous sine wave signal, is a maximum of 42.5W (left+righ channels) and 34.3W (center channel), as shown in the "Pd– P_O " characteristics graphs.

When estimating the power dissipation for an actual audio signal input, the rule of thumb is to select Pd corresponding to $(1/10) \times P_0$ max (within safe limits) for a continuous sine wave input. For example,

```
Pd (L)+Pd (R)=25W [for (1/10) × P<sub>O</sub> max=2.5W]
Pd (C)=21.6W [for (1/10) × P<sub>O</sub> max=5W]
Pd (total)=Pd (L)+Pd (R)+Pd (C)=46.6W
```

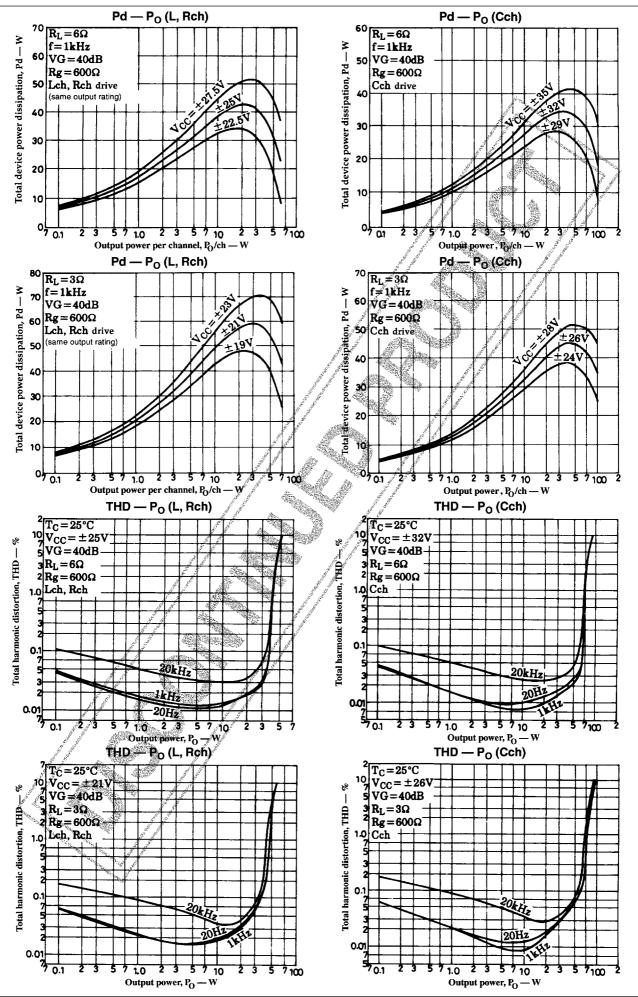
The STK400-490 has 4 left + right-channel power transistors (N), 2 center-channel power transistors (N'), left + right-channel thermal resistance per transistor (θ j-c') is 2.1°C/W, and center-channel thermal resistance per transistor (θ j-c') is 1.7°C/W. If the guaranteed maximum ambient temperature, Ta, is 50°C, then the required heatsink thermal resistance, θ c-a, is :

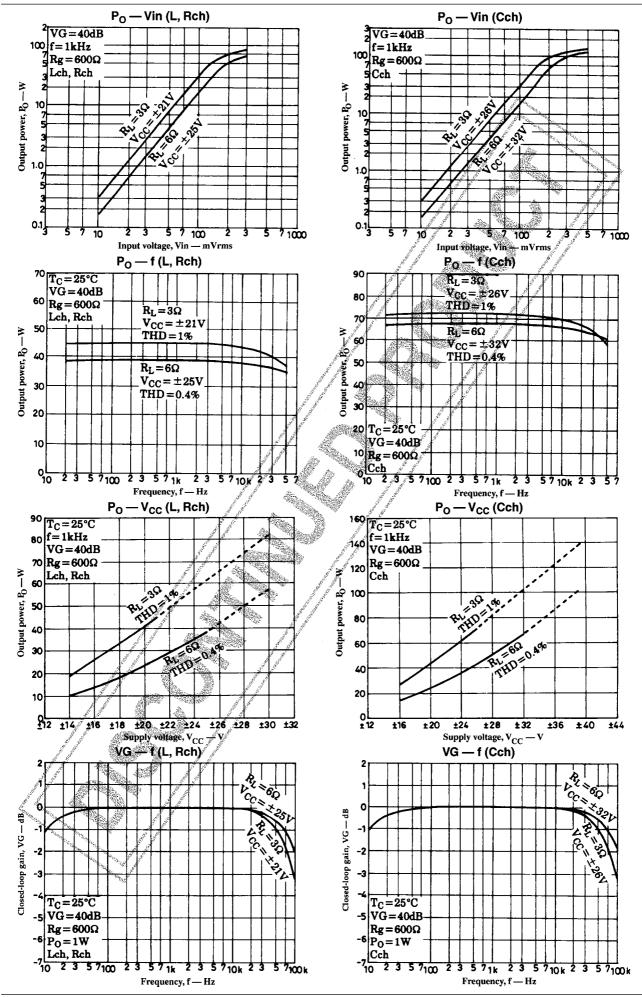
```
From expression (1)':
    θc-a < (125-50)/46.6
    < 1.60

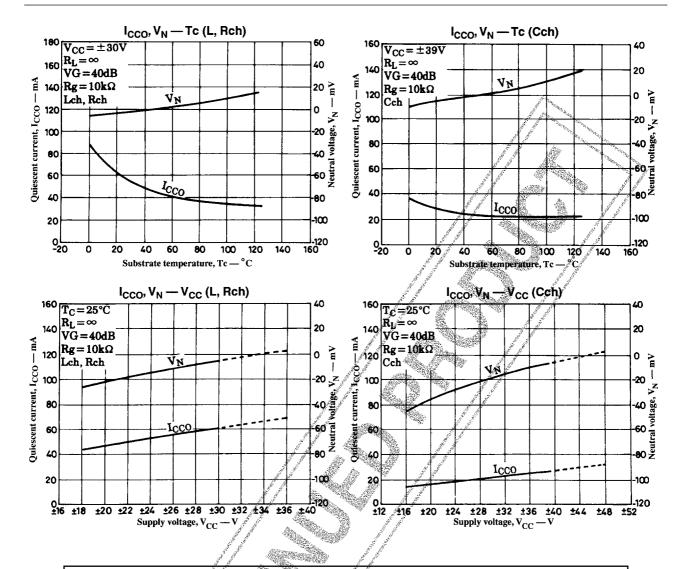
From expression (2)':
    θc-a < (150-50)/46.6-25×2.1/(46.6×4)
    < 1.86

From expression (3)':
    θc-a < (150-50)/46.6-21.6×1.7/(46.6×2)
    < 1.75
```

Therefore, to satisfy all three expressions, the required heatsink must have a thermal resistance less than 1.6°C/W.


Similarly, when STK400-490 V_{CC} (1)= $\pm 21V$, V_{CC} (2)= $\pm 26V$ and R_L =3 Ω ,


```
Pd (L)+Pd (R)=30W [for (1/10) \times P_O \max=2.5W]
Pd (C)=25.5W [for (1/10) \times P_O \max=5W]
Pd (total)=Pd (L)+Pd (R)+Pd (C)=55.5W
```


```
From expression (1)': \theta c\text{-}a < (125\text{-}50)/55.5 \\ < 1.35 From expression (2)': \theta c\text{-}a < (150\text{-}50)/55.5\text{-}30\times2.1/(55.5\times4) \\ < 1.51 From expression (3)': \theta c\text{-}a < (150\text{-}50)/55.5\text{-}25.5\times1.7/(55.5\times2) \\ < 1.41
```

Therefore, to satisfy all three expressions, the required heatsink must have a thermal resistance less than 1.35°C/W.

This heatsink design example is based on a constant-voltage supply, and should be verified within your specific set environment.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1999. Specifications and information herein are subject to change without notice.